

DEPARTMENT OF SCIENCE

COURSE OUTLINE – FALL 2011 MA 1130 D2 ELEMENTARY CALCULUS I

INSTRUCTOR:	Brian Redmond, Ph.D.	PHONE:	(780) 539-2093
OFFICE:	J206	EMAIL:	bredmond@gprc.ab.ca

OFFICE HOURS: T R 14:00 – 16:00

PREREQUISITE: Pure Mathematics 30

REQUIRED TEXT/RESOURCE MATERIALS:

Stewart: Single Variable Calculus, 7E, Brooks/Cole 2012.

CALENDAR DESCRIPTION:

The course will include a review of analytic geometry; functions, limits, continuity; differentiation of elementary functions; applications to maxima, minima and rates; introduction to integration; Fundamental Theorem; numerical integration; and areas and other applications of the definite integral to areas.

CREDIT/CONTACT HOURS: 3 (3-2-0) UT

DELIVERY MODE(S):

Lecture:	8:30-9:50	TR	J227
Seminar:	14:30-16:20	W	J226

COURSE OBJECTIVES:

At the end of this course, students should be able to...

- State the definition of a function and describe the various ways a function can be represented;
- Find the domain and range of a function;
- Compose functions;
- Calculate limits of functions, including rational and trigonometry functions, using the limit laws;
- Identify points or intervals where a function is continuous/discontinuous;
- Calculate derivatives of functions using the limit definition and the differentiation rules;
- Estimate the value of a function at a point using the tangent line (linear) approximation or differentials;
- Calculate derivatives implicitly and solve related rates problems;
- Sketch the graph of a function and indicate the extreme values, points of inflection, vertical and horizontal asymptotes, and intervals of concavity;
- Apply calculus to solve optimization problems;
- Calculate definite integrals using Riemann sums and the Fundamental Theorem of Calculus;
- Calculate definite and indefinite integrals using tables of integrals and substitution;
- Use the definite integral to find the area between curves.

TRANSFERABILITY:

UA, UC, UL, AU, GMU, etc. Transfers to other institutions: Consult the Alberta Transfer Guide for more information.**

**Note: Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability.

GRADING CRITERIA:

GRANDE PRAIRIE REGIONAL COLLEGE					
GRADING CONVERSION CHART					
Alpha Grade	4-point	Percentage	Designation		
	Equivalent	Guidelines	Designation		
A ⁺	4.0	90 - 100			
Α	4.0	85 – 89	EXCELLENT		
A ⁻	3.7	80 - 84	FIRST CLASS STANDING		
B⁺	3.3	77 – 79			
В	3.0	73 – 76			
B⁻	2.7	70 – 72	GOOD		
C ⁺	2.3	67 – 69			
С	2.0	63 - 66	SATISFACTORY		
C [_]	1.7	60 - 62			
D ⁺	1.3	55 – 59			
D	1.0	50 – 54	MINIMAL PASS		
F	0.0	0 – 49	FAIL		
WF	0.0	0	FAIL, withdrawal after the deadline		

EVALUATIONS:

Assignments:	10%	
Quizzes:	15%	
Midterm:	25%	(Tuesday, October 25, 2011)
Final Exam:	50%	(Cumulative and scheduled during exam period, TBA)

Note: There will be no make-up quizzes or exams. If a quiz/test is missed for a valid reason and proper documentation is provided, then the weight of the quiz/test will be transferred to another component. Late assignments will not be accepted.

STUDENT RESPONSIBILITIES:

Attend all lectures and seminars. If a lecture or seminar is missed, it is the student's responsibility to catch up on the material and obtain the missing lecture notes.

STATEMENT ON PLAGIARISM AND CHEATING:

Refer to the Student Conduct section of the College Admission Guide at http://www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at www.gprc.ab.ca/about/administration/policies/**

**Note: all Academic and Administrative policies are available on the same page.

Week Topics Notes First class: Thurs. Sept. 8 1. Sept. 5-9 **Precalculus Review** 2. Sept. 12-16 Functions, Limits & 3. Sept. 19-23 Continuity §1.1-1.6,1.8 4. Sept. 26-30 5. Oct. 3-7 Differentiation §2.1-2.9 6. Oct. 10-14 Thanksgiving, Monday, Oct. 10 – no classes 7. Oct. 17-21 Midterm (Tues. Oct. 25th) Applications of 8. Oct. 24-28 Differentiation Nov. 2, last day to 9. Oct. 31-Nov.4 §3.1-3.5,3.7 withdraw §3.8 (optional) 10. Nov. 7-11 Remembrance Day, Friday, Nov. 11 – no classes 11. Nov. 14-18 Integration 12. Nov. 21-25 §3.9,4.1-4.5 13. Nov. 28-Dec. 2 Applications of 14. Dec. 5-9 Integration/Review §5.1 15. Dec. 12-21 **Final Exams**

COURSE SCHEDULE/TENTATIVE TIMELINE: